SIGNATURE	NAME	
Student ID #		

Physics 410
Spring 2013
Prof. Anlage
First Mid-Term Exam
1 March, 2013

CLOSED BOOK, Calculator Permitted, CLOSED NOTES

Point totals are given for each part of the question.

If you run out of room, continue writing on the back of the same page. If you do so, make a note on the front part of the page!

Note: You must solve the problem following the instructions given in the problem. Correct answers alone will not receive full credit.

Partial Credit:

→ Show Your Work! Answers written with no explanation will not receive full credit.

→ You can receive credit for describing the method you would use to solve a problem, even if you missed an earlier part.

Problem	Credit	Max. Credit
1		25
2		25
3		20
4		30
TOTAL		100

$$\vec{r} \cdot \vec{s} = rs \cos \theta \qquad \vec{r} \times \vec{s} = det \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ r_x & r_y & r_z \\ s_x & s_y & s_z \end{bmatrix} \qquad \vec{F} = m\ddot{\vec{r}} \qquad \vec{f} = -f(v)\hat{v} \qquad f(v) = bv + cv^2$$

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \qquad m\dot{v} = -\dot{m}v_{ex} + F^{ext} \qquad v - v_0 = v_{ex} \ln \frac{m_0}{m} \qquad \vec{R} = \frac{1}{M} \sum_{\alpha=1}^N m_\alpha \vec{r}_\alpha$$

$$\vec{\ell} = \vec{r} \times \vec{p} \qquad \vec{L} = \frac{1}{M} \sum_{\alpha=1}^N \vec{r}_\alpha \times \vec{p}_\alpha \qquad \dot{\vec{L}} = \vec{\Gamma}^{ext} \qquad \Delta T = T_2 - T_1 = \int_1^2 \vec{F} \cdot d\vec{r} = W(1 \to 2)$$

$$T = mv^2/2 \qquad U(\vec{r}) = -W(\vec{r}_0 \to \vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{F}(\vec{r}') \cdot d\vec{r}' \qquad \vec{\nabla} \times \vec{F} = 0 \qquad \vec{F} = -\vec{\nabla} U$$

$$E = T + U_1 + \dots + U_n \qquad \Delta E = W_{nc} \qquad t = \sqrt{\frac{m}{2}} \int_{x_0}^x \frac{dx'}{\sqrt{E - U(x')}} \qquad \vec{F}(\vec{r}) = f(\vec{r})\hat{r} \qquad U = U^{int} + U^{ext} = \sum_{\alpha} \sum_{\beta>\alpha} U_{\alpha\beta} + \sum_{\alpha} U_{\alpha}^{ext} \qquad Net \ force \ on \ particle \ \alpha = -\nabla_\alpha U \qquad T + U = constant \qquad F = -kx \leftrightarrow U = \frac{1}{2}kx^2 \quad \ddot{x} = -\omega^2 x \leftrightarrow x(t) = A \cos(\omega t - \delta) \qquad \ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0 \leftrightarrow x(t) = Ae^{-\beta t} \cos(\omega_1 t - \delta) \ (assuming \ \beta < \omega_0), \beta = \frac{2b}{m}, damping \ force = -bv, \omega_0 = \sqrt{\frac{k}{m}}, \omega_1 = \sqrt{\omega_0^2 - \beta^2} \qquad F(t) = mf_0 \cos(\omega t), x(t) = A \cos(\omega t - \delta), where \ A^2 = \frac{f_0^2}{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}$$